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A continued fraction solution to the problem of a single atom 
interacting with a single radiation mode in the electric dipole 
approximation 

S Swain 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast, BT7 INN, UK 

MS received 7 September 1972 

Abstract. Difference equations are derived for the Laplace transforms of the time dependent 
probability amplitudes of a system consisting of a single photon interacting with a single 
two-level atom in the electric dipole approximation. The rotating wave approximation is not 
made. Formally exact continued fraction solutions of these difference equations are obtained 
and applied to the problems of stimulated and spontaneous emission and absorption of 
radiation. 

1. Introduction 

The simplest model for the interaction between radiation and matter is that in which a 
single two-level atom interacts with a single mode of the electromagnetic field. If the 
interaction between the atom and the field is assumed to be electric dipole, the 
Hamiltonian may be written in second quantized form as (using a system of units in 
which h = 1) 

(1) 

If la) is the excited energy eigenstate of the isolated atom, and Ip) is the ground state, 
then the ‘spin’ operators 0 3 ,  o+ and B -  are defined by the following relations : 

H = (03 + +)w0 + (at U + $)U + ( B + + B - ) (gat + g*a). 

at is the creation operator for a photon of frequency w,  and w0 is the energy separation 
of the isolated atom’s eigenstates. The coupling constant g is given by 

1 # 2  

g =  -i(E) d . u  

where E is the dielectric constant, d i s  a dipole matrix element, and U is the normal mode 
function for the field. 

It is customary in calculations in quantum optics to make the rotating wave approxi- 
mation (RWA) which involves neglecting the terms gate+ and g*ao- in (1). These 
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terms are the so called antiresonant terms. When this approximation is made, the 
resulting Hamiltonian can be solved exactly (Jaynes and Cummings 1963). Although 
exact solutions have been found to various multi-atom multi-mode generalizations of 
(1) in the RWA (Tavis and Cummings 1968. Mallory 1969, Walls and Barakat 1970, 
Scharf 1970, Walls 1971, Davidson and Kozak 1971, Swain 1972a,b,c,d), to the 
author's knowledge no exact solution of the Hamiltonian (1) has been published. In 
this paper we present exact continued fraction expressions for various quantities which 
determine the time-dependent behaviour of the system described by (1). 

In $ 2  we review the method of approach and in $ 3  determine the fundamental 
difference equations. These are solved in $ 4  for the specially simple case of spontaneous 
emission. The results of$ 4 are then generalized in $ 5 to obtain solutions for the problems 
of stimulated emission and absorption. In $ 6  we give the general solutions of the 
fundamental difference equations. 

2. The generalized Fourier transform approach 

The method we adopt is that described by Pike and Swain (1971) which makes use of the 
generalized Laplace (or Fourier) transform approach (Titchmarsh 1937). However, the 
work of Jaynes and Cummings suggests that it is more profitable to work with probability 
amplitudes, rather than with probabilities directly, for this particular system. (If one 
writes down the equations of motion for the density matrix appropriate to (1) in the 
RWA, one obtains an infinite set of coupled equations, whereas the equations of motion 
for the probability amplitudes involve only two coupled equations, which are easily 
solved.) It is therefore necessary to adapt the approach of Pike and Swain slightly. 

If la) and Ib) are two possible state vectors of the system at time t = 0, we shall be 
interested in calculating quantities of the form 

(aib(t))  = (a1 e-iH'lb), (6) 

which we shall refer to as probability amplitudes. They are clearly matrix elements of the 
time evolution operator, and a knowledge of all these amplitudes would furnish a 
complete description of the possible time evolutions of the system from any initial state. 
Furthermore, we have that P J t ) ,  the probability that the system will be in state in)  at 
time t if it was in state Ib) at time t = 0, is given by 

Po,&) = I ( M t ) > 1 2 .  ( 7 )  

(alb(tl) = 2 (a10 exp(-iESt)(Slb) 

We may write 

(8) 

where 15) is an exact eigenstate of H ,  and Er is the corresponding energy eigenvalue. In 
(9) the contour lies above the real axis and encloses all the poles of the integrand. If we 
define 
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it is easy to show that &((a1 ; Ib)) obeys the equation of motion 

E L E ( ( a I ;  I b ) )  = ( a i b > + L E ( ( a l H ;  I b ) ) .  (11) 

Here (a lH is the hermitean conjugate of the ket obtained by operating with H on la). 
If the heirarchy of equations generated by (1 1) can be solved in some way, the probability 
coefficients may be obtained from the relation 

3. Derivation of the difference equations 

The evaluation of the quantity (alH which appears in the right hand side of the equation 
of motion (11) is facilitated if we write the Hamiltonian (1) in a different form. We do 
this by making use of the identities 

I@>(@l +lP>(Bl = 1 (13) 
and 

where n is an eigenvalue ofthe number operator ata. Utilizing (13) and (14) in (1) we find 

H = wola>(al+ nwln>(nl 
n 

+ 1 J.+l(l.> (PI + IB) (al)(gln+ 1) (nl +g*ln) ( n +  11). (15) 
n 

(For future convenience we have omitted the zero point energy of the field.) 

moment we leave unspecified. If we define the quantities 
We wish to consider the time evolution from some initial state I$) which for the 

and 

it is quite easy to show by using the Hamiltonian (15) with the equation of motion (11) 
that M, and Pn satisfy the following recurrence relationships : 
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and n = 0, 1,2, 3, . . . . The terms a, and b, must satisfy the completeness relation 

2 (la,I2 + lb,I2) = 1. 
n 

The set of equations (18), (19) and (20) provide a complete description of the time- 
dependent properties of the system giqen by (1) which is prepared in the arbitrary initial 
state I$), in terms of the initial matrix elements a, and b,. The a, and P, will in general 
be functions of all the a, and b,; consequently it is not surprising that these equations 
are cumbersome to solve in general. 

If the rotating wave approximation is made, equations (18) and (19) reduce to 

which are easily solved without making any further approximations to give 
__ 

a,{E-(n+ l ) w ) + g * J n +  ~ b , , , . ~  
( E  - oo - nw) { E  - ( n  + 1)w) - Ig12(n + 1) 

.p’ = 

b,{E-ruo-(n- l )w}+gJMa,_,  

Actually, the system (18) and (19) comprises two independent sets of equations, for if 
one takes n = 0 in (18) one finds that the quantities 

%23 a 4 , .  . . and 81 > 8 3  > B S  > .  . ’ (26) 

are coupled, whereas if one initially takes the value n = 1 in (18), one finds that the 
quantities 

~ 1 ,  a3 a s ,  . . . and P o ,  P 2 ,  P4,  . . . (27) 

are connected. This corresponds to the property that if, say, the system was initially in a 
state in which the atom was in its excited state with an odd number of photons present, 
then there are no transitions which could take one to a state in which the atom was in 
its excited state with an even number of photons present, or the atom was in its ground 
state with an odd number of photons present. 

Before studying the general case, it is convenient to consider a simple case, that of 
spontaneous emission. A study of this situation indicates how to proceed in more 
complex cases. 

4. Spontaneous emission 

We assume that the initial state of the system is that in which the atom is in its excited 
state and there are no photons present. Thus we take 

I$) = I.>IO>> (28) 

and consequently 
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Our general equations (18) and (19) now reduce to 

( E  - w O  - nw)A, = + g f i B , -  + g * m B , +  n = 0 ,2 ,4 ,6  , . . .  (30) 

( E  - mu)B ,  = g,/trrA, - + g*,/l??+lA, + , , 
and 

1 1 2 =  1 ,3 ,5 .7  . . . . .  (31) 
We have written A,  for SI, and B, for p, to distinguish the solution in the case of 
spontaneous emission from the solutions in the general case. 

If we make the substitutions 

in (30) and (31) we find that the 2,  and p, must satisfy 

1gI2(n+ 1) 2, = ( E  - coo - n o )  - 
Pi?+ 1 

and 

in order that (32) and (33) be solutions of (30) and (31). We may rewrite these as 

(34) 

( 3 5 )  

+ 2 

and 

(37)  
M2(m + 1) 

,U, = ( E  -- nzto) -- - 
E - o  -((mt. 1)w _ -  lgl 2on + 2) , 

0 
Pm -- 2 

(36) and (37) lend themselves readily to  a continued fraction solution (Wall 1948) : 

and 

Equations (lo), (32) and (33) imply that the zeros of E., and p m  are energy eigenvalues of H .  
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e- iE t  

21gl 
lgl E-00-  

E - 0 -  
% I Z  E -00 - 2 0 -  

2 

’ (41) 

Expression (41) is in a reasonably convenient form for making numerical calculations as 
one can truncate the continued fraction at the appropriate point to give the desired 
accuracy. The first approximant (Wall 1948) to the continued fraction in (41) leads to 

(42) 

which is just the ‘exact’ solution in the rotating wave approximation (Swain 1972d, 
equation (53)). 

It is interesting to compare the predictions of (41) and (42) for the weak coupling 
case. The integrals in these equations may be evaluated using the calculus of residues. 
To zeroth order in 1gI2, the poles of the integrand of (41) occur at 

E = w0,  E = W ,  E = w0+2w, E = 3w, . . . .  

In the rotating wave approximation we would get contributions from only the first two 
poles, which, as is well known (eg Swain 1972c), lead to a cosinusoidal behaviour for 
PbR)(t). If, for example, we took the third approximant to the continued fraction in 
(41) we would find firstly that the first two poles would occur at values somewhat 
different to those obtained in the rotating wave approximation, that is, there would be an 
effective frequency shift, and secondly that there would be two further poles. It is reason- 
able to assume that if 181’ was sufficiently small then the residues at the second two poles 
would be very much smaller than the residues at the first two poles. Consequently (41) 
would predict an approximately cosinusoidal behaviour of slightly different frequency 
from that of PbR)(t) with additional higher frequency modulations of small amplitude 
superimposed upon it. Both (41) and (42) predict that Po(t) should tend to unity at t = 0 
(because of our initial conditions) so that we would expect the differences between the 
two formulae to be apparent only at times sufficiently large for the differences between 
the two frequencies to produce an appreciable effect and/or the effects of the modulations 
to become large. Hence we would expect significant differences between the predictions 
of (41) and (42) for sufficiently large times, even if the coupling was weak. Furthermore 
PhR)(t) is a periodic function, whereas (41) in general describes an almost periodic function. 

Physically the existence of just two poles in the rotating wave solutions is a conse- 
quence of the property that in the rotating wave approximation only such states as 
\z ) \n)  and IP>\n+ 1> are connected. If the rotating wave approximation is not made, 
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then the state 1a)ln) is connected to the states I/?)lnkl) directly, and the states 
1cr)ln k2), Ia)in *4), . . . , I/?)ln i 3), Ifi)in f 5 )  , . . . indirectly. It is the existence of these 
additional transitions which makes the discussion of the full interaction more difficult 
than that of the rotating wave interaction, and which destroys the periodic behaviour 
typical of the latter case. 

5. Stimulated emission and absorption 

Here we consider the evolution of the atom from an initial state in which there are s 
photons present, and the atom is either in its excited state or in its ground state. In the 
first case the initial behaviour of the system will be principally that of stimulated and 
spontaneous emission of radiation ; for brevity we will refer to this as the case of stimulated 
emission. In the second case, the behaviour of the system for the first few instants will be 
in the main stimulated absorption of radiation. The procedure for obtaining the solutions 
is similar in both cases, so we shall first treat the case of stimulated emission in detail, 
and then merely present the results for stimulated absorption. 

The initial conditions appropriate to stimulated emission imply that 

an = a n , s  

b, = 0, all n 
(43) 

so that our difference equations (18) and (19), take the form 

(E-co , -~w.)AX~)  = 6, ,s+g&B~-l(e)+g*JnSIB~+ l(e) (44) 

( ~ - n o ) ~ ; ( e )  = g&A;- l(e)+g*Jn+lA;+l(e) (45) 

where the superscript s and the letter e in parenthesis are used to make explicit the fact 
that A;(e) and Bi(e) are the solutions of (18) and (19) appropriate to the initial conditions 
(43). Prompted by the form of the solutions in the case of spontaneous emission studied 
in 0 4, we adopt the trial solutions 

and 

where the quantities pi, Ai, Ii :  mi and A;(e) are to be determined. 
Consider first the case n > s. Substituting from (46a) and (47a) into (44) and (45) we 

find that (46a) and (47a) are solutions providing that the pi and ii satisfy the equations 

3 n = s+2 , s+4 , s+6 , .  lgl 2(n + 1). E - w , - n o  = in+ 
Pn-11 
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and 

n = s + l , s + 3 , s + 5  , . . . .  (49) lgl "E + 1) . 
A n + ,  ' 

E - n o  = pn+ 

Apart from the conditions on n, these equations are identical with (34) and (35) (which 
justifies our notation). 

Now take the case n < s, and substitute from (46b) and (47b) into (44) and (45). The 
conditions that (46b) and (47b) be solutions are that l i  and mi satisfy the relations 

(50) 

(51) 

n = s-2,s-4,s-6, . . .  1gI2n . 1, = E-oo-no--, 
mn- 1 

and 
n = s-l,s-3,s-5, . . .  lgl 2 n  . 

I n - 1  
m, = E-no----, 

Casting these equations into a different form we obtain 

lgl 2n I ,  = E - w o - n w -  
lgl ' ( n  - 1) E - ( n - 1 ) o -  , 

1,-2 

and 

lgl 2 n  m, = E - n o -  
Igl 2(n - 1)' E -oo - (n -  1)o - 

4 - 2  

( 5 3 )  

Now (52) and (53) definejnite continued fractions, so that 1, and m, may easily be obtained 
in closed term for small values of n. For example, we find 

10 = E -00 mo = E 

Igl m ,  = E-U-- lgl 
-E E-COO 

11 = E - o o -  

To complete the solutions for 
. . . .  (54) 

stimulated emission it remains to find the quantity 
A;(e). Putting n = s in (44) and using (47a) for B:+ l(e) and (47b) for BZ- l(e) we arrive 
at the equation 

Consequently 

E-oo-so---  
ms-1 Ps+l 

By utilizing equations (34) and (50), At(e) may be written alternatively as 
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or 

If we put s = 0 in (56) we find that Ag(e) = A ,  = 1/&. Equations (48), (49) (46a) and 

Thus we have verified that the solutions appropriate to stimulated emission are given 

As a specific example, take s = 2. We then find 

(47a) then give the same results for spontaneous emission that we obtained in 8 4. 

by equations (46), (47), and (56), (57) or (58). 

A:(e) = A:(e) = A:(e) = . . . = @(e) = B;(e) = Bi(e)  = . . . = 0. 

To conclude this section we study the case of stimulated absorption. Taking 
11)) = Ifl)ls) our initial conditions take the form 

so that the difference equations (18) and (19) may then be written as 

( E  - w - nw)Ai(a) = g&Bi - (a) + g*fi+TBi + (a) 

(E-no)B",a) = 6 , , n + g ~ A ~ - l ( a ) + g * ~ A ~ +  l(a) (62) 

(61) 

where the bracketed letter a now indicates that we are dealing with the case of absorption. 
There is a symmetry between equations (44) and (45) and equations (61) and (62); if we 
interchange A:(e) and Bi(a), Bi(e) and Ai(a), E - coo and E ,  then (62) becomes identical to 
(44), and (61) to (45). We may use this property (and the property that iLi tf pi, li H mi as 
E and ( E  - w,) are interchanged) to write down the solutions in the case of absorption as 
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Again taking s = 2 as an example, we find 

B:(a) = B:(a) = @(a) = . . . = &(a) = &(a) = Ai(a) = . . . = 0. (65) 

Once the Ai and Bi are known the corresponding probability amplitudes may be 
found from (12). 

6. General solution of the difference equations 

We are now in a position to find the solution of the general difference equations (18) and 
(19), where a,  and b, are arbitrary. I t  is convenient to consider the calculation of the sets 

separately. Examining the case (26) first of all, it is apparent that the a, and P, in this set 
will be functions of the a,, a 2 ,  a4 , .  . . ;  b , ,  b,, b , ,  . . . only. Accordingly we take as our 
trial solution 

(66) 

where the ut and the U: are to be determined. Substituting from (66) and (67) into (18) 
and rearranging the terms a little, we find 

1 [ a 2 s { ( E - o o - n o ) u , 2 s - 6 2 s , , - g ~ c , 2 S 1  - - g * J X U ; ; , ;  
s = o  

+ b 2 s + 1 { ( E - o o - n o ) ~ ~ S + 1  -g&u,2S+1 - g * ~ $ , + , ' ) ]  = 0 ,  (68) 
whereas if we substitute from (66) and (67) into (19) we obtain 

1 [a,,{(E - nw)ti,2"g&u,2" 1 -g*Jn+lLl;s+ 1 )  + { ( E  - nw)c,2s+ .- f i 2 r +  l , r? 
s = o  

-gJnU;S+1 -g*&TiU,2::'}] = 0. (69) 
As the aZs and b2s+ are arbitrary quantities, for equations (68) and (69) to be satisfied 

in general we must require 

( n  even) (70) ( E  - WO - nu)u,2S = 62s,n +gJiu,"s- 1 +g*Jn+lc;; 1 

( E  - ? W ) U ; ~  = g&u;S 1 + g * a u ; ;  (n  odd) (71) 
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and 

( E  - W O  - nco)uis+ = gJk:"_+' + g*a/nfl~:$+,~ 
(E-fico)u;s+' = a,,+ ,,n+g~unZ5_+11+g*2/lYl+lu,2s++ll 

(n even) (72) 

( n  odd). (73) 

Now equations (70) and (71) are identical in form with equations (44) and (45), so that we 
may write at once 

where the &?'((e) and BiS(e) are given by equations (46), (47) and (56). Equations (72) and 
(73) are equivalent to equations (61) and (62), so that we have 

u;s+l E ~,2"'(a) (76) 

1 =  is+ '(a) (77) 

where the A;"'(a) and B;"'((a) are given by equations (63) and (64). 
Thus our general solution in the first case is 

m 

B n  = 1 (b2s+ lB?S+ '(a)+a2sBis(e)) (n  odd). (79) 
s = o  

One may proceed in a similar manner to find the general solutions for the second set. 
The result is 

The general structure of the solutions is made apparent by giving a few examples. 
Thus 

go = a o A ~ + b , t i l ~ + a 2 t i l ~ + b 3 A ~ +  . . . 
a ,  = b o A ~ + a l A : + b 2 A ~ + a 3 A : +  . . .  
etc. 

More explicitly, the first few terms are 



Continued fraction solution of single atomlmode problem 20 3 

The expressions for the p, may be obtained from the expressions for the s1, by making 
the substitutions 

a, -> b,, iLi -+ pi, Pi -+ 4, l j  --t m j ,  mj -+ l j .  (87) 

(84), (85) and (86) may be compared with the exact solutions in the RWA, (24) and 
(25) ,  which we note may be written in the form 

where 

i!1) = E - w  - y1w - lg('(n + l),'{E - (n  + 1)w) (90) 

m!') = E - nw - (g12n/{E - oo - (n - l ) o }  (91) 

mIp!, = E - - ( n + l ) o  = ~ l p ! ~  (92) 

i!'? = E - (n - 1)w = lio1 (93) 

and 

1.;') is the first approximant to in, mko? the zeroth approximant to m,, ~ etc. 

7. Conclusion 

We have used the generalized Laplace transform technique to obtain formally exact 
continued fraction solutions for the time-dependent probability amplitudes of the system 
consisting of a single photon interacting with a single atom in the electric dipole approxi- 
mation. The zeros of the continued fractions also give energy eigenvalues of the system. 
Our equations are in a useful form for numerical computation, as the continued fractions 
may be terminated at an appropriate stage, and the probability amplitudes then expressed 
as integrals of explicit functions. In addition, our results are obtained in a form which 
makes comparison with the solutions in the rotating wave approximation straight- 
forward; it is easy to identify those terms which are omitted when the rotating wave 
approximation is made. 
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